Remark on a Paper by Huddleston

By Gerhard Merz

Abstract

Using a function-theoretic approach, we obtain, in a quite simple way, linear relations between the values of a function and its first derivatives at n abscissa points x_{1}, \cdots, x_{n}. The derivation of these formulae in a recent paper by Huddleston was rather cumbersome. Possible generalizations are indicated.

1. In a recent paper, Huddleston [1] gave some relations between the values of a function and its first derivatives at n abscissa points. Huddleston's derivation is, to speak with his own words, "an exercise in drudgery". Using a function theoretic approach, we give a new proof of the results in [1] which is both simple and lucid and, in addition, indicates how one may obtain more general relations by the same method.
2. Let C be a simple closed rectifiable positively oriented curve in the complex plane. Let $x_{1}<x_{2}<\cdots<x_{n}$ be n points on the real axis which lie in the interior of C, and let

$$
w(z)=\left(z-x_{1}\right)\left(z-x_{2}\right) \cdots\left(z-x_{n}\right)
$$

For functions $f(z)$, holomorphic in a domain G which contains C, consider the linear functional

$$
\begin{equation*}
L(f)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{w^{2}(z)} d z . \tag{1}
\end{equation*}
$$

Clearly, $L(f)$ vanishes if $f(z)$ is a polynomial $P_{2_{n-2}}(z)$ of degree less than or equal to $2 n-2$. From the Taylor series

$$
f(z)=f\left(x_{v}\right)+f^{\prime}\left(x_{v}\right)\left(z-x_{v}\right)+\cdots
$$

and

$$
w^{2}(z)=w^{\prime 2}\left(x_{\nu}\right)\left(z-x_{\nu}\right)^{2}+w^{\prime}\left(x_{\nu}\right) w^{\prime \prime}\left(x_{\nu}\right)\left(z-x_{\nu}\right)^{3}+\cdots,
$$

we get

$$
\begin{equation*}
\operatorname{res}_{z=x_{v}} \frac{f(z)}{w^{2}(z)}=\frac{1}{w^{\prime 2}\left(x_{\nu}\right)} f^{\prime}\left(x_{\nu}\right)-\frac{w^{\prime \prime}\left(x_{v}\right)}{w^{\prime 3}\left(x_{\nu}\right)} f\left(x_{v}\right), \tag{2}
\end{equation*}
$$

and the residue theorem gives

$$
L(f)=\sum_{\nu=1}^{n} \frac{1}{w^{\prime 2}\left(x_{\nu}\right)} f^{\prime}\left(x_{\nu}\right)-\frac{w^{\prime \prime}\left(x_{\nu}\right)}{w^{\prime 3}\left(x_{\nu}\right)} f\left(x_{\nu}\right) .
$$

Received March 1, 1972.
AMS 1970 subject classifications. Primary 26A75; Secondary 65L05.
Key words and phrases. Polynomials, error estimation.

For $f(z)=P_{2 n-2}(z)$, we obtain Huddleston's formula

$$
\sum_{\nu=1}^{n} \frac{1}{w^{\prime 2}\left(x_{\nu}\right)} P_{2 n-2}^{\prime}\left(x_{\nu}\right)-\frac{w^{\prime \prime}\left(x_{v}\right)}{w^{\prime 3}\left(x_{v}\right)} P_{2 n-2}\left(x_{v}\right)=0 .
$$

3. Using the fact that $L(f)$ is equal to the divided difference with coalescent knots $\left[x_{1} x_{1} x_{2} x_{2} \cdots x_{n} x_{n}\right]$ (see [2, p. 199]), we get in the case that $f(z)$ is real for real z :

$$
\begin{equation*}
L(f)=\frac{f^{(2 n-1)}(\xi)}{(2 n-1)!}, \quad \xi \in\left(x_{1}, x_{n}\right) \tag{3}
\end{equation*}
$$

(see [2, p. 13]). Huddleston's formula (5.1), (5.2) is a consequence of (1), (2) and (3).
4. In the case of equidistant knots, e.g. $x_{\nu}=\nu, \nu=1(1) n$, we arrive at

$$
\sum_{\nu=1}^{n}\binom{n-1}{\nu-1}^{2}\left[f^{\prime}(\nu)-\sum_{\mu=1 ; \mu \neq \nu}^{n} \frac{2}{\nu-\mu} f(\nu)\right]=\frac{[(n-1)!]^{2}}{(2 n-1)!} f^{(2 n-1)}(\xi)
$$

5. Obviously, our method may be generalized to obtain similar relations for other Hermite data.

Institut für Angewandte Mathematik I
Universität Erlangen-Nürnberg
852 Erlangen, Germany

1. R. E. Huddleston, "Some relations between the values of a function and its first derivative at n abscissa points," Math. Comp., v. 25, 1971, pp. 553-558.
2. N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924.
